

Agenda

- Motivation
- Market trends on driver monitoring
- Scope of Bosch activities
- Principles of steering-angle based drowsiness detection
- Summary

Motivation

34% of all drivers experiences highly drowsy driving
- DVR 2012 (German Road Safety Council)

41.0% of drivers admit to having "fallen asleep or nodded off" while driving - AAA 2010

24% of drivers experienced drowsiness

- GDV, 2008 (Institute for traffic engineering of German Insurances)

20% of all crashes were influenced by drowsiness

- NHTSA/VTTI 100 car study 2006

90% of drowsiness related accidents occur on non-urban roads - VW 2005

There are several studies documenting drowsiness in road traffic safety

Interior / driver monitoring: Bosch history

Research and Pre-Development

Inattention Detection

Research project (2001-2006):

 Video-based eye-lid closure measurement.

AKTIV (2006-2010):

 Algorithm development for inattention.

Occupant Protection

Pre-development project (2001-2006):

 Video-based occupant classification for passive safety (FMVSS 208 requirement)

Production development

Drowsiness Detection

Production project (2006-2010):

 Function development using driver steering behavior, market introduction in 2010.

Current approach is to utilize existing sensors for drowsiness detection

Driver Drowsiness – Detection Variants

Solution	Basics	
Steering pattern monitoring → Detection of characteristic steering behavior	→Steering angle sensor signal or electrical power steering	
Lane monitoring →Monitoring of lane-keeping behavior	→Multi Purpose Camera	
Driver eye/face monitoring → Analysis of eyelid closure behavior → Yawning detection	→Interior Camera	
Physiological measurements → Brain activity → Heart rate → Skin conductance → Electrical activity by skeletal muscles	 →Electroencephalography (EEG) →Electrodermal activity (EDA) →Electromyogram (EMG) 	

Detection Principles - Comparison

Steering based- Measuring driver's movements		
<u>Pros</u>	<u>Cons</u>	
→ High sensor availability in vehicles	Dependency on vehicle parameters	
→ Small motions can be detected	→ Influence of driving style	

Lane based- Measuring driver's lane guidance		
<u>Pros</u>	<u>Cons</u>	
 Simple vision based sensor 	 Dependent on environmental conditions 	
 Minimal influence of driving style 	→ Constraints for signal availability	

→ Detection principles can be combined to improve performance

Driver monitoring – Future state

Driver safety awareness

New market for health services

CE trends

Steering angle signal Inputs

Electric Power Steering (EPS)

Steering Angle Sensor

→ System offers flexibility in using inputs from two products available in the market

Operating principle

Detection of driver's reduced guidance ability

via

High precision steering angle Alternative Sensor

Electric Power Steering

Camera w/ Lane Data

Time, vehicle speed, turn indicator,...

Detection

algorithm

Drowsiness value

Warning (Audible and/or visual)

Adaption of driver assistance systems

Situational Context

(Duration, Monotony)

Detection of driver drowsiness

→ Bosch's system evaluates driver micro sleep events to determine level of drowsiness

Summary

- Drowsiness is one major reason for serious accidents
- The Bosch system operates by analyzing the driver's steering behavior
- Identifies steering patterns where the driver does not steer for a brief period and then makes an abrupt steering correction
- → System combines the frequency and strength of these reactions with other data, such as vehicle speed and duration of travel, to calculate a drowsiness index
- Driver Drowsiness Detection identifies when a driver is at risk of falling asleep and sends a warning

